Issues with sparse softmax cross entropy in Keras
24 Mar 2018import keras as k
import numpy as np
import pandas as pd
import tensorflow as tf
Experimenting with sparse cross entropy
I have a problem to fit a sequence-sequence model using the sparse cross entropy loss. It is not training fast enough compared to the normal categorical_cross_entropy. I want to see if I can reproduce this issue.
First we create some dummy data
X = np.array([[1,2,3,4,5], [0,1,2,3,4]]).reshape(2,5)
Y = k.utils.to_categorical(X, 6)
Then we define a basic model which ties the weight from the embedding in the output layer
input = k.layers.Input((None, ))
embedding = k.layers.Embedding(6, 10)
lstm_1 = k.layers.LSTM(10, return_sequences=True)
embedding_input = embedding(input)
lstm_1 = lstm_1(embedding_input)
lambda_layer = k.layers.Lambda(lambda x: k.backend.dot(
x, k.backend.transpose(embedding.embeddings)))
lambd = lambda_layer(lstm_1)
softmax = k.layers.Activation('softmax')(lambd)
arg_max = k.layers.Lambda(lambda x: k.backend.argmax(x, axis=2))(softmax)
model = k.Model(inputs = input, outputs=lambd)
model_sparse = k.Model(inputs = input, outputs=lambd)
Now we want to compile our model using, first the categorical_crossentropy loss to make sure everything runs fine. We want to make sure we are tracking accuracy as well, we need to implement this function ourselves…
def sparse_loss(target, output):
# Reshape into (batch_size, sequence_length)
output_shape = output.get_shape()
targets = tf.cast(tf.reshape(target, [-1]), 'int64')
logits = tf.reshape(output, [-1, int(output_shape[-1])])
print('logits ',logits.get_shape())
res = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=targets,
logits=logits)
if len(output_shape) >= 3:
# if our output includes timestep dimension
# or spatial dimensions we need to reshape
res = tf.reduce_sum(res)
return(res)
else:
return(res)
def normal_loss(y_true, y_pred):
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y_true, logits=y_pred)
return(tf.reduce_sum(loss))
model.compile(k.optimizers.SGD(lr=1), normal_loss,
target_tensors=[tf.placeholder(dtype='int32', shape=(None, None))])
model_sparse.compile(k.optimizers.SGD(lr=1), sparse_loss,
target_tensors=[tf.placeholder(dtype='int32', shape=(None, None))])
# model_sparse.compile(k.optimizers.SGD(lr=1), sparse_loss)
logits (?, 6)
print(model.evaluate(X, X))
print(model_sparse.evaluate(X, X))
2/2 [==============================] - 0s 48ms/step
17.917783737182617
2/2 [==============================] - 0s 113ms/step
17.917783737182617
model_sparse.fit(X,X, epochs=10)
Epoch 1/10
2/2 [==============================] - 1s 388ms/step - loss: 17.9178
Epoch 2/10
2/2 [==============================] - 0s 4ms/step - loss: 17.9026
Epoch 3/10
2/2 [==============================] - 0s 7ms/step - loss: 17.8617
Epoch 4/10
2/2 [==============================] - 0s 5ms/step - loss: 17.7170
Epoch 5/10
2/2 [==============================] - 0s 8ms/step - loss: 17.2932
Epoch 6/10
2/2 [==============================] - 0s 8ms/step - loss: 16.3683
Epoch 7/10
2/2 [==============================] - 0s 9ms/step - loss: 14.0281
Epoch 8/10
2/2 [==============================] - 0s 5ms/step - loss: 10.6938
Epoch 9/10
2/2 [==============================] - 0s 6ms/step - loss: 10.7706
Epoch 10/10
2/2 [==============================] - 0s 10ms/step - loss: 16.4204
<keras.callbacks.History at 0x11590c1d0>
model.fit(X, X, epochs=10)
Epoch 1/10
2/2 [==============================] - 0s 248ms/step - loss: 15.0457
Epoch 2/10
2/2 [==============================] - 0s 6ms/step - loss: 11.0899
Epoch 3/10
2/2 [==============================] - 0s 7ms/step - loss: 6.4245
Epoch 4/10
2/2 [==============================] - 0s 8ms/step - loss: 4.6941
Epoch 5/10
2/2 [==============================] - 0s 7ms/step - loss: 3.1935
Epoch 6/10
2/2 [==============================] - 0s 7ms/step - loss: 2.8392
Epoch 7/10
2/2 [==============================] - 0s 8ms/step - loss: 1.1097
Epoch 8/10
2/2 [==============================] - 0s 8ms/step - loss: 0.6671
Epoch 9/10
2/2 [==============================] - 0s 9ms/step - loss: 0.5167
Epoch 10/10
2/2 [==============================] - 0s 12ms/step - loss: 0.4167
<keras.callbacks.History at 0x116a14ba8>